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A synthesis of licofelone using Fenton’s reagent
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An efficient synthesis of licofelone, an anti-inflammatory drug currently undergoing phase-III clinical
studies, based on Fenton-type radical alkylation of 2,3-dihydro-1H-pyrrolizine 3 with iodoacetonitrile
or iodoacetates is reported. The iodoacetates can be replaced by NaI and by the corresponding
bromoacetate.

� 2008 Elsevier Ltd. All rights reserved.
Licofelone (ML3000),1 a dual cyclooxygenase/5-lipoxygenase
inhibitor developed by Merckle, is the first member of a new class
of analgesic and anti-inflammatory drugs currently undergoing
phase-III clinical studies for treatment of osteoarthritis.2
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There are several methods for construction of the parent moiety
of the drug; it is usually formed by condensation of rather unstable
2-benzyl-4,4-dimethyl-1-pyrroline (1) with 4-chlorophenacyl bro-
mide (2) providing 2,3-dihydro-1H-pyrrolizine 3.3–5 Though a dif-
ferent synthesis of 3 based on the Suzuki cross-coupling reaction
has been published,6–8 the original method using the intermediacy
of 1 seems to be more efficient. Compound 3 when treated with
ethyl diazoacetate gives ester 4a and its hydrolysis gives licofelone.
Alternatively, compound 3 on treatment with oxalyl chloride fol-
lowed by hydrolysis gives acid 5. Wolff–Kishner reduction then
provides licofelone (Scheme 1).3–5

The only known methods for the transformation of 3 into licofe-
lone avoiding the use of diazoacetate are based on reduction of the
ll rights reserved.

.

oxo group of 5 by classical Wolff–Kishner reduction3–5 or by its
modification using NaBH3CN reduction of the corresponding p-tol-
uenesulfonyl hydrazide.9 The latter methodology can also be used
for the reduction of the corresponding ethyl ester leading to 4a.8 In
order to circumvent using hydrazine derivatives, we decided to de-
velop a new methodology for the transformation of 3 into licofe-
lone which would be suitable for industrial application.

Our attempts at both electrophilic alkylation using Lewis acids
(BF3�Et2O, MgBr2, AlCl3) and nucleophilic alkylation (NaH, BuLi,
LDA) of 3 with ethyl bromoacetate failed, as did initial attempts
at radical alkylation with ethyl iodoacetate using AIBN and tribu-
tyltin hydride, tris(trimethylsilyl)silane or N-ethylpiperidine
hypo-phosphite.

Surprisingly, we found that the reaction was successful using
Fenton’s reagent.10,11 Fenton’s reagent is a solution of hydrogen
peroxide and a Fe2+ salt, typically ferrous sulfate. It is used as a
powerful source of radicals and is often applied for hydroxylation
of aromatic compounds,12,13 including polycyclic aromatic com-
pounds.14 It can also be used for other reactions, for example, for
the oxidation of barbituric acid to alloxane.15

Torssell et al.16–20 discovered that Fenton’s reagent in the pres-
ence of DMSO generates methyl radicals, which can, under suitable
conditions, methylate reactive substrates, for example, quinones,
nitroaromatic compounds, thiophene, furan, pyridine, and quino-
line derivatives. Minisci et al.21 and Baciocchi et al.22–24 found that
the methyl radicals formed from DMSO and Fenton’s reagent in the
presence of iodo derivatives generated the corresponding alkyl
radicals, which alkylate effectively reactive pyrrole, indole, thio-
phene, or furan derivatives. This methodology was used for the
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Scheme 1. Synthesis of licofelone.
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alkylation of pyrrole, 1-methylpyrrole and, pyrrole-2-carboxylic
acid with iodoacetonitrile, or methyl and ethyl iodoacetate.22

For our purposes, we reacted 3 with Fenton’s reagent in combi-
nation with DMSO and ethyl iodoacetate to obtain a good yield of
product 4a. Though the best results were achieved with DMSO, the
reaction also proceeded with other sulfoxides, for example, dibutyl
sulfoxide, tetrahydrothiophene 1-oxide, methyldodecyl sulfoxide,
and methylphenyl sulfoxide (thioanisole S-oxide). However, with
these sulfoxides, the reaction rate was lower and incomplete con-
version was often achieved. In the case of methylphenyl sulfoxide,
its solution in acetonitrile or DMF was used and only low yields of
4a were obtained both due to poor conversion and due to the for-
mation of several minor by-products. We also tried to substitute
DMSO with dimethyl sulfone and methylphenyl sulfone, but no
reaction was observed. Therefore DMSO was used routinely for fur-
ther optimization of the reaction.
Cl
N

3

Cl
N

4a; R = Et
4b; R = Me
4c; R = ter t-Bu

CO2R

i or i i

Cl
N

5

CN

iii

Scheme 2. Radical alkylations of 3. Reagents: (i) FeSO4/H2O2, DMSO, ICH2CO2R; (ii)
FeSO4/H2O2, DMSO, NaI, BrCH2CO2R; (iii) FeSO4/H2O2, DMSO, ICH2CN.
Next we extended our study to the use of methyl and tert-butyl
iodoacetate, as well as iodoacetonitrile with similar results ob-
tained to those with ethyl iodoacetate (see Scheme 2 and Table
1).25–27

Esters 4a and 4b were saponified easily with aqueous NaOH or
KOH at 60 �C within 1 h, while saponification of 4c was slower
requiring 10 h for complete conversion. However, good yields of
licofelone were obtained from all esters 4. Attempts to prepare
licofelone by hydrolysis of nitrile 5 failed; even vigorous hydrolysis
provided only moderate yields of the corresponding amide 6 in-
stead. Its treatment with an ethanolic solution of hydrogen chlo-
ride provided a crude mixture containing mainly ester 4a and
hydrolysis of the mixture then gave licofelone (Scheme 3). Licofe-
lone was found to be unstable and its quantitative decarboxylation
was observed by NMR after 72 h in CDCl3 at ambient temperature.

The starting iodo esters were either commercially available or
prepared from the corresponding bromo derivative and NaI in ace-
tone or acetonitrile. We found that though the bromoacetates were
not effective in the radical reaction, it was possible to use them in
the presence of NaI under similar conditions as the iodo analogs.
This fact is interesting since the reaction is performed in the pres-
ence of relatively high amounts of water. Selected examples are gi-
ven in Table 1.

All compounds were identified on the basis of analytical and
spectral data (IR, UV, 1H NMR, 13C NMR, MS, HRMS).28–33 For com-
pounds 4a and 5, HMBC and HSQC NMR spectra were also studied.
Table 1
Radical alkylation of 3 using Fenton’s reagent

Product Reagent Conditionsa Yield (%)

4a ICH2CO2Et DMSO 78
4a BrCH2CO2Et DMSO, NaI 75
4a ICH2CO2Et THTO,b MeCN 43
4a ICH2CO2Et PhS(O)Me, DMF 28
4b BrCH2CO2Me DMSO, NaI 57
4c BrCH2CO2But DMSO, MeCN, NaI 62
5 ICH2CN DMSO 65

a In all cases, Fe(II)SO4 and 30% H2O2 were used.
b THTO—tetrahydrothiophene 1-oxide.
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Scheme 3. Saponification of esters 4 and nitrile 5. Reagents and conditions: (i)
aqueous NaOH or KOH, MeOH or EtOH, 60–70 �C.
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In summary, we have developed an efficient synthesis of licofe-
lone, an anti-inflammatory drug currently undergoing phase-III
clinical studies, based on Fenton-type radical alkylation of com-
pound 3 with iodoacetonitrile or iodoacetates. The iodoacetates
can be replaced by NaI and the corresponding bromoacetate.
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